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In this paper a technique for ‘‘instantaneous’’ reconstruction of state variables of a
flexible beam is proposed. The reconstructor uses spline shape functions to interpolate the
available measurements and to take into account the boundary conditions. Unlike usual
dynamic observers, this technique does not require a copy of the system neither any
information about the inputs hence it is able to work even in the presence of persistent
disturbances and uncertain parameters. The spline functions introduce a sort of ‘‘spatial
filtering’’ on the high-frequency modes, this phenomenon increases the robustness of the
control scheme against spillover. Computer simulations show that this reconstructor, joined
to a suitable controller, is able to reduce the vibration of beams subject to persistent
multifrequency disturbances acting at unknown beam abscissae.
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1. INTRODUCTION

In the last few years there has been increasing interest around vibration suppression of
flexible structures, in particular, those research dealing with the problem of reducing the
noise generated by flexible structures when they are excited by some external
pseudo-periodic causes [1].

The vibration motion in flexible systems is described by means of partial differential
equations and, except for some simple cases, no closed-form solution can be expected. To
overcome this difficulty the partial differential equations are usually replaced, via spatial
discretization, by means of a finite set of ordinary differential equations. Implicit in this
approach is a system truncation: a system of infinite order is replaced by a finite order
one [2, 3].

Unfortunately, the controller designed on the finite dimensional approximation, may
destabilize the real system [4, 5]. This phenomenon was firstly investigated by Balas in [6]
and was termed ‘‘spillover’’: the measurements of the sensors contain both modelled and
unmodelled dynamics, hence, when they are feedback, they may persistently excite the
unmodelled dynamics and, then, drive the system to instability.

This phenomenon may be suppressed by avoiding the interaction between modelled and
unmodelled dynamics. In order to reduce this interaction various approaches have been
proposed. In reference [7] an observer is designed on the basis of a system model of order
greater than that used to design the controller, in reference [6] the sensor data are
prefiltered with a comb filter, in reference [8] a delayed resonator is used, in references
[9, 10] it is shown that a control system based on distributed actuators and distributed
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sensors is not affected by spillover phenomenon (for further approaches see references [2, 3]
and the references therein).

The colocated control [11–13] is unaffected by spillover phenomenon. In this control
technique the structure is forced by means of n signals proportional to the measurements
in the same points. In other words the control is constituted by n parallel SISO schemes.
To increase performances, MIMO techniques must be used, namely state feedback
techniques. Unfortunately, the presence of a dynamic observer needed for state feedback
controllers, may exaggerate the spillover phenomenon.

In this work the state variables, needed for state feedback controllers, are reconstructed
by means of spline functions. The idea to use spline functions to reconstruct flexible system
variables has been proposed also in reference [14] where a set of experimental results are
used to determinate the spline coefficients.

In this paper the spline functions are designed in order to interpolate the available
measurements and to take into account the boundary conditions. In particular, a spline
function is defined for each class of physical homogeneous state variables (e.g.
displacement, velocity of deformation, etc.).

This reconstruction is not based on the mathematical model of the structure neither it
uses information about inputs, then it is insensible to parameter uncertainties and it may
work even in the presence of persistent unknown disturbances. However the most
interesting property is that it operates as a spatial filter, i.e. it represents the spatial
deformation by means of the smoothest spatial modes, and this contributes to reduce the
spillover phenomenon.

Unfortunately, this is also the main drawback of this reconstructor. Indeed it is able
to correctly estimate only the first n modes of the structure, where n depends on the sensors
number and location. Hence the controller too must depend exclusively on these modes.
This kind of controller can be designed through the LQ technique with a proper choice
of weighting matrices.

Some preliminary and interesting results on this spline reconstructor have been
presented [15, 16].

This paper is organized as follows. In section 2, the flexible beam model used for the
controller design is described. In section 3 the spline reconstructor is presented, whereas
in section 4 the controller is developed. In section 5 simulation results and robustness
analyses are collected. Finally, in section 6 some conclusive remarks are presented.

2. MODEL OF A FLEXIBLE BEAM

This paper is focused on transverse vibration of a beam like structure. For this class
of system the free motion is described by the well known equation:

Mv̈(x, t)+EIv(4)(x, t)=0 (1)

where M is the mass per unit of length, v(x, t) is the vertical displacement, EI is the flexural
rigidity. A dot indicates a partial derivative with respect to the time variable t and the
superscript in a parentheses represents the derivative order with respect to the spatial
variable x. In the following, two different situations have been considered: a simply
supported beam and a cantilever beam. In these cases the boundary conditions are given
in Table 1 where L is the length of the beam.

In order to obtain a finite dimensional model, the flexible beam is divided into n
elements, and the shape of each of them is described, at each time instant, by the
corresponding elastic strain.
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T 1

Displacement boundary conditions

Simple supported Cantilevered

v(x, t)=0 v(x, t)=0
v(2)(x, t)=0 v(1)(x, t)=0 at x=0 [t

v(x, t)=0 v(2)(x, t)=0
v(2)(x, t)=0 v(3)(x, t)=0 at x=L [t

The resulting dynamic model is

Mq̈+Fq̇+Kq=Tuu+Tdd (2)

where q=(v1, a1, v2, a2, . . . , vn+1, an+1)T is the vector of Lagrangian coordinates, i.e.
displacements vi and slopes ai at abscissae xi , i=1, . . . , n+1 of the spatial discretization
(see Figure 1), M and K are mass and stiffness matrix respectively, F is the damping matrix,
u is the vector of control generalized forces, d is the vector of disturbances acting on the
structure and Tu and Td are control and disturbance input matrices respectively. Equation
(2) may be rewritten in the equivalent state-space form

ż=$ 0
−M−1K

I
−M−1F%z+$ 0

M−1Tu

0
M−1Td%0ud1=Az+Buu+Bdd (3)

where

z=(v1, a1, v2, a2, . . . , vn+1, an+1, v̇1, ȧ1, v̇2, ȧ2, . . . , v̇n+1, ȧn+1)T. (4)

3. STATE RECONSTRUCTION

In this section some results of the spline function theory are reported and it is shown
how to reconstruct the state variables (4) by means of spline functions.

3.1.  

Let y(x) be a function defined on the interval x$ [a, b] and let ỹ= (y1, . . . , ym ) be its
m samples in the correspondence of the ordered knots x̄=(x̄1, . . . , x̄m ) with
a= x̄0 E x̄i E x̄m+1 = b (see Figure 2).

The cubic spline ŷ(x) interpolating these samples is composed of r=m+1 polynomials

bi1(x− x̄i )3 + bi2(x− x̄i )2 + bi3(x− x̄i )+ bi4 i=1, . . . , r; x$ [x̄i−1, x̄i ], (5)

Figure 1. Lagrangian variables.
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Figure 2. Spline interpolation (data to fit ×).

i.e. a cubic polynomial is used to approximate y(x) in each sub-interval [x̄i−1, x̄i ]. In the
correspondence of the knots the spline fits the samples of y(x), i.e. ŷ(x̄i )= y(x̄i ),
i=1, . . . , m. Moreover, in order to smooth the ŷ(x) function, it is imposed that, in the
correspondence of knot points, first and second derivative must be continuous.

All these constraints impose 4r−4 conditions on the 4r parameters bij , then the user
must select conditions on ŷ(x) and on its derivatives in the correspondence of the extreme
a and b in order to obtain unique solution.

These constraints can be arranged into the following matrix equation

D0(x̄)b=D1(x̄)ỹ (6)

where b is the vector composed of the 4r parameters bij and the matrices D0 and D1 depend
on the abscissae x̄i , i=0, . . . , m+1 and on the conditions imposed by the user on the
spline function and its derivatives in a and b [17, 18]. The b parameters may be determined
from the sample values ỹ as

b=D0(x̄)−1D1(x̄)ỹ. (7)

The spline interpolation at generic abscissa x can be written as

yx (x)= s(x, x̄)D0(x̄)−1D1(x̄)ỹ (8)

where s(x, x̄) is a vector function which selects the piece of cubic spline at abscissa x. From
equation (8) it follows that, once the boundary conditions have been specified, the values
that the interpolator function ŷ(x) assumes in a finite number of specified points x1, . . . , xn

can be expressed in the compact form

Y
 =S(x1, . . . , xn , x̄)D0(x̄)−1D1(x̄)ỹ=T(x1, . . . , xn , x̄)ỹ (9)

where

S(x1, . . . , xn , x̄)= 2s(x1, x̄)
···

s(xn , x̄)3. (10)
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3.1.    

Let us return to the beam model described in section 2. The use of spline function to
reconstruct the beam deformation may be justified on the basis of the result shown in the
Appendix.

The state vector of the spatial discretized model (4) is composed of the following
variables:

[v(x1, t), . . . , v(xn+1, t)··· a(x1, t), . . . , a(xn+1, t)···
v̇(x1, t), . . . , v̇(xn+1, t)··· ȧ(x1, t), . . . , ȧ(xn+1, t)]T.

Assume that a limited number m of vertical velocity measurements ṽ·(t)= (ṽ·1, . . . , ṽ·m )
at abscissae x̄=(x̄1, . . . , x̄m ) are available at each time instant. Moreover, in virtue of
Table 1 at the extreme ends of the beam one has the conditions given in Table 2. In other
words, the boundary conditions may be seen as further fictitious measurements. The rate
of deflection at generic abscissa x and at the points x1, . . . , xn+1 of the spatial discretization
of the beam can be reconstructed via spline function. In particular from equation (8) and
(9) one has:

v̂·(x, t)= s(x, x̄)D0(x̄)−1D1(x̄)ṽ·(t) (11)

(v̂·(x1, t), . . . , v̂·(xn+1, t))T =T(x1, . . . , xn+1, x̄)ṽ·(t). (12)

As far as the remaining state variables are concerned, namely deflection, slope and rate
of slope, they can be reconstructed in the following way:

(v̂(x1, t), . . . , v̂(xn+1, t))T =T(x1, . . . , xn+1, x̄) g
t

0

ṽ·(t) dt (13)

where it has been implicitly assumed that v(x, 0)=0. (In the presence of zero-mean inputs,
this hypothesis can be relaxed replacing the integrator operator in (14) with a suitable
transfer function [17].)

Moreover

â
·(x, t)=

d
dx

s(x, x̄)D0(x̄)−1D1(x̄)ṽ·(t) (14)

then

(â·(x1, t), . . . , â
·(xn+1, t))T =Sa (x1, . . . , xn+1, x̄)D0(x̄)−1D1(x̄)ṽ·(t)

=Ta (x1, . . . , xn+1, x̄)ṽ·(t) (15)

(â(x1, t), . . . , â(xn+1, t))T =Ta (x1, . . . , xn+1, x̄) g
t

0

ṽ·(t) dt (16)

T 2

Velocity boundary conditions

Simple supported Cantilevered

v̇(x, t)=0 v̇(x, t)=0
v̇(2)(x, t)=0 v̇(1)(x, t)=0 at x=0

v̇(x, t)=0 v̇(2)(x, t)=0
v̇(2)(x, t)=0 v̇(3)(x, t)=0 at x=L
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Figure 3. Reconstructor scheme.

where

d
dx

s(x, x̄)=x= x1

Sa (x1, . . . , xn+1, x̄)= ··· . (17)G
G

G

G

G

F

f

G
G

G

G

G

J

j
d
dx

s(x, x̄)=x= xn+1

The state reconstructor scheme is shown in Figure 3, the re-ordination block is a
combinatorial one which sorts the reconstructed variables in the same order of the z vector.
It is interesting to note that the proposed reconstructur is not based on the mathematical
model of the beam and it does not use any information about intputs. Then it is insensitive
to parameters variations and is able to estimate the state variables, with a bounded error,
also in the presence of external persistent disturbances acting on the system through (also
unknown) input matrices.

Another interesting feature of the proposed state reconstructor is its intrinsic filtering
property. The beam deformation is approximated, at each time instant, by means of a cubic
spline. In reference [18] it is shown that spline functions have the property to minimize
the overall curvature among all functions fitting the measured values. Then, at each time
instant, the deformation is approximated by means of the smoothed spatial frequency
modes, i.e. the low frequency modes. This spatial filtering, unlike the classical
time-filtering, does not introduce any phase-lag, hence it does not deteriorate stability. A
practical consequence of this filtering action is that, even though the inputs excite
high-frequency modes, they tend to be screened out in the reconstructed state variables.
In section 5 computer simulations show that this spline observer can reduce the spillover
phenomenon.
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4. FEEDBACK CONTROLLER

In a lot of situations, vibrations in flexible systems are introduced by means of some
pseudo-periodic disturbances. In particular, the components of the disturbances close to
the natural frequencies of the system (due to the small damping factors of these latter) are
highly emphasized. Hence an active vibration controller should be able to reduce the
resonance peaks of the system in the correspondence of the bandwidth of the disturbances.
Moreover, in order to reduce the spillover phenomenon, the controller should be focused
only on these dynamics.

This goal can be reached via an LQ regulator if in the performance index

J=g
a

0

(zTQz+ uTRu) dt (18)

the matrix Q is selected as

Q=G−TQ
 G−1 Q
 =$qI2n

0
0
0% (19)

where G is the matrix which puts the matrix A of (3) into the real diagonal form ordered
with increasing values of the associated eigenvalues.

Note that minimizing (18) with the weight matrix (19), is equivalent to minimizing

J	 =g
a

0

(hTQ
 h+ uTRu) dt (20)

subject to

ḣ=$L1

0
0
L2%h+$B	 1

B	 2%u (21)

where h=G−1z are the modal coordinates partitioned in accordance with (19), and
[B	 T

1 B	 T
2 ]T =G−1Bu .

Due to exponential stability of system (3), the only semi-definite positive solution P	 of
the Riccati equation

LTP	 +P	 L−P	 G−1B	 R−1B	 TG−TP	 +Q= 0 (22)

has the structure

P	 =$P	 1

0
0
0% (23)

where P	 1 is the solution of the Riccati equation

LT
1P	 1 +P	 1L1 −P	 1B	 1R−1B	 T

1P	 1 + qI2n =0. (24)
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The optimal control will be

u=R−1(G−1Bu )TP	 h=R−1B	 T
1P	 1h1 (25)

=R−1B	 T
1P	 1[I2n 0]G−1z. (26)

It is evident that the control signal depends only on the first n modes. Moreover, the
control action modifies exclusively the eigenvalues of the L1 block matrix, i.e. only the first
n modes are affected by the control signal.

5. SIMULATION RESULTS AND ROBUSTNESS ANALYSIS

Let us consider a beam with the following parameters: EI=2·55×1013 [kg · mm3/s2],
M=10−3 [kg/mm], L=2300 [mm] with 1% damping factor j in each mode, in the two
configurations shown in Figure 4.

In order to obtain a finite dimensional model, the beam was divided into 10 elements.
Moreover, the following force disturbance, which reproduces the pressure wave recorded
on a turbofan aircraft fuselage [17], excites the beams

d(t)= s
3

k=1

ak [1+ sin (vat)] sin (kvt+ d sin (vpt)) (27)

where v=250 rad/s, va =25 rad/s, vp =0·8 rad/s, d=0·1, a1 =5 mN, a2 =3 mN,
a3 =2 mN. The disturbance acts at abscissa x=1530 [mm] of the simple supported beam
and at the tip of the span beam.

On the basis of the disturbance spectrum and of the natural frequencies of the systems
the matrices Q and R in the performance index (18) have been chosen to penalize only
the first two modes:

Q=1010G−T$I4

0
0
0%G−1; R= I3. (28)

In particular, the control signal used in the feedback scheme is

u=R−1BT
u Pẑ (29)

Figure 4. Beam configurations.
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Figure 5. Time history of the simple supported beam at xa =1020 (open loop, dashed line; optimal feedback
with spline reconstructor, solid line).

where ẑ is the spline reconstruction of the state variables z obtained from the three velocity
deflection sensors and using the reconstruction scheme of Figure 3. In order to reduce the
influence of the initial estimation error, the integrator blocks of Figure 3 have been
replaced by transfer functions 1/(s+10−6).

Figure 6. Time history of the cantilever beam at xb =1530 (open loop, dashed line; optimal feedback with
spline reconstructor, solid line).
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Figure 7. Additive uncertainties.

The performance of the proposed controller (optimal feedback of the reconstructed
state) is shown in Figure 5 where open loop and closed loop behaviours of the simple
supported beam at abscissa xa =1020 are compared. The system is forced by the
disturbance (27) from the instant t=0 and with the following initial condition

z(0)=0·25Bd . (30)

It is evident that in the steady-state the controller is able to reduce the vibrations. In
the transient, when the output largely depends on the high-frequency dynamics, open loop
and closed loop behaviours are similar. The performance obtained with (29) is almost

Figure 8. Diagram of the robust stability margin function (optimal feedback, dashed line; optimal feedback
with spline reconstructor, solid line).
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Figure 9. Time histories at abscissae xa and xb , respectively, of the perturbed more detailed models in the
presence of a controller designed on the ‘‘10-part model’’ and applied by means of the spline reconstructor (open
loop, dashed line; optimal feedback with spline reconstructor, solid line).

indistinguishable to that obtained using direct feedback of the state variables (for this
reason this latter has not been reported in the figures).

The results for the cantilever beam have been shown in Figure 6. In this case the action
of the controller is more efficient.

In order to evaluate the robustness of the control scheme the Small Gain Theorem has
been used. Consider now the block diagram of Figure 7 where D(s) represents a stable
perturbation from a nominal value P(s). The parameter D(s) takes into account both the
plant-parameters uncertainties and the neglected dynamics. In reference [4] it is shown that,

T 3

Beam characteristic functions

Characteristic equation Vi (x) si

Simple supported sin l=0 c li = ip sin lix
L

Cantilever beam cosh l cos l+1=0 cosh lix
L −cos lix

L

− si0sinh lix
L −sin lix

L 1
si =

cosh li +cos li

sinh li +sin li
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also for an infinite dimensional system, a controller K(s) which stabilizes P(s) stabilizes
all the perturbed system such that

s̄(D( jv))E 1
s̄(K( jv)(I+K( jv)P( jv))−1)

(31)

where s̄ represents the maximum singular value. This equation gives a bound on the
maximum amplitude of the perturbation which does not destabilize the closed loop system.
Then the right side of this equation can be considered as a robust stability margin function
(RSMF).

In Figure 8 the RSMFs obtained for the direct state feedback and using the spline
reconstructor are compared. The presence of the spline reconstructor greatly increases the
robustness of the scheme. Note that at very low frequencies this is not true and the
spline-RSMF drops below to the direct state feedback-RSMF; however, generally, at low
frequencies model errors are negligible.

To have a confirmation of the stability robustness property, the previously designed
controller has been tested on a ‘‘more accurate’’ model obtained by dividing each beam
element into two parts. Moreover, it has been assumed the following parameter errors

DEI=−30% Dj=−15%. (32)

As shown in Figure 9 there are no performance degradation in the closed loop response,
even the ‘‘parameter errors’’ have deeply modified the open loop behaviour. On the other
side, the direct feedback of state variables associated with the ‘‘10 part-model’’ drives the
system to instability.

6. CONCLUSION

In this paper an active vibration controller for a flexible beam has been presented. The
controller is based on an LQ regulator and it uses a spline approach to reconstruct the
state variables from sensors measurements. The spline reconstructor is able to reconstruct,
with a bounded error, the first n modes of the structure and only these modes are weighted
into the LQ performance index. This allows one to focus the control action only on the
prescribed dynamics. Moreover, the spline reconstructor introduces a sort of spatial
filtering on the un-modelled dynamics which allows one to reduce the spillover
phenomenon.
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13. A. P, J. D and C. Ḿ 1985 Journal of Guidance, Control and Dynamics
15, 390–395. Active damping by a local force feedback with piezoelectric actuators.

14. F. K, V. J. M and T. A. D 1994 IEEE Trans. on Automatic Control 39,
1016–1020. On the elastic mode estimation aspect of a class of multibody flexible systems.

15. G. A, G. C and R. S 1995 4th IEEE Conference on Control
Applications, Albany, New York, 896–901. A spline approach to state reconstruction for optimal
active vibration control of flexible systems.

16. G. A, G. C and R. S 1995 3rd IEEE Mediterranean Symposium on New
Directions in Control and Automation, Limassol, Cyprus, 352–359. Optimal vibration control of
flexible systems.

17. R. S 1996 Ph.D. Dissertation (in Italian), Dip. Informatica e Sistemistica, Napoli. Model
and control of flexible systems subject to persistent narrow band disturbances.

18. C.  B 1978 A Practical Guide to Splines. New York: Springer.
19. L. M 1986 Elements of Vibration Analysis. New York: McGraw–Hill. 2nd edition.

APPENDIX

In this section it is shown that a spline function is able to reconstruct, with a bounded
error, the free vibration of a beam like structure. It is well known [19] that the solution
of (1) is

v(x, t)= s
a

i=1

Vi (x) sin 0l2
i

L2XEI
M

t+fi1 (33)

where li are the solutions of the characteristic equation, and Vi (x) are the eigenfunctions.
The values assumed by li and Vi (x) depend on the boundary conditions; as shown in
Table 3. Before presenting the main result of the spline reconstructor, one needs to recall
the following result on spline functions

 1([18])
If a function y(x), defined on the interval x$ [a, b], has a continuous fourth derivative then

the error between y(x) and the cubic spline ŷ(x) fitting the data (x̄i , y(x̄i )) is bounded by

>y− ŷ>E 5
384D

4>y(4)> (34)

where D is the maximum distance between two consecutive knots and

>y>,max
x$ [a,b]

=y(x)= (35)

T 1. Consider the free vibration v(x, t) of a beam in the presence of m discrete
measurement points. Assume that the initial conditions excite at the most the first n modes
of the beam. Say v̂s(x, t) the cubic spline which fits, at each time instant, the available
measurements and satisfies at extreme ends conditions analogous to the boundary
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conditions of the beam. Then the approximation error is bounded, and an upper bound
on the error is given by

>v− v̂s>E 5
384

D4

L4 VmaxF(n) [t (36)

where D is the maximum distance between two consecutive sensors (considering the beam
extreme as further fictitious sensors), Vmax,maxi,x>Vi (x)>, i=1, . . . , n, x$ [0, L] is the
maximum amplitude of the excited modes and

F(n)= l4
1 + l4

2 + · · ·+ l4
n . (37)

Proof. The hypothesis on initial conditions imply that the summation in (33) is limited
to the first n terms. Moreover

v̈(x, t)=− s
n

i=1 0li

L1
4 EI
M

Vi (x) sin 0l2
i

L2XEI
M

t+fi1 (38)

then

>v̈>E 1
L4

EI
M

(l4
1>V1>+ l4

2>V2>+· · ·+ l4
n>Vn>)

E 1
L4

EI
M

Vmax(l4
1 + l4

2 + · · ·+ l4
n )=

1
L4

EI
M

VmaxF(n) (39)

Moreover, from (1)

>v(4)>EM
EI

>v̈>E 1
L4 VmaxF(v) (40)

and, using (34) of Lemma 1, we have the assertion. Q
Note that, for the simple supported configuration the function F(n) is bounded by

F(n)E (n+1)5 −1
5

p4. (41)

NOMENCLATURE

v(x, t) beam deformation
v(i) ith derivative with respect to spatial variable
v̇, v̈ first and second derivative with respect to time
n number of element of the discretized beam model
L beam length
x1, . . . , xn beam abscissae of the spatial discretization
vi , v̇i deflection and deflection rate at abscissa xi

ai , ȧi slope and slope rate at abscissa xi

>v(x, t)> maximum of =v(x, t)= with respect to x in [0, L]
D maximum distance between two knots of the spline function
m number of available measurements
x̄=[x̄1, . . . , x̄m ] abscissae of the measurements
ṽ·= (ṽ·1, . . . , ṽ·m ) vertical velocity measurements
v̂, â, v̂·, â

· spline reconstruction of the discretized beam quantities
ŷ, v̂s spline reconstruction of y(x) and v(x, t) respectively
s̄(F) maximum singular value of F
In identity matrix of order n.


